Synthesis of 4-Halo-3(2*H*)-furanones Using Intramolecular Cyclization of Sulfonium Salts

Sho Inagaki,[®] Maiko Nakazato, Nozomi Fukuda, Satoru Tamura, and Tomikazu Kawano*

Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan

Supporting Information

ABSTRACT: A simple and efficient synthesis of 4-halo-3(2H)-furanones by halogenative intramolecular cyclization of sulfonium salts is described, which can expedite the production of a variety of 4-bromo- or 4-iodo-3(2H)-furanones, useful synthetic building blocks, in good to high yield under mild conditions.

INTRODUCTION

The polysubstituted 3(2H)-furanone structure is a significant moiety present in biologically active substances and natural products.¹ These structures have been reported to exhibit a range of bioactivities such as antitumor,² antiallergy,³ antiulcer,⁴ antiproliferation,⁵ selective COX-2 inhibiton,⁶ and selective MAO-B inhibition activities.⁷ A number of synthetic methodologies have been developed for the construction of functionalized 3(2H)-furanones.^{8,9} Among functionalized 3(2H)furanones, those possessing a halogen group at the 4-position serve as the useful substances. For example, 4-[3-(3-fluorophenyl)-4,5-dihydro-5,5-dimethyl-4-oxo-2-furanyl]benzenesulfonamide (Polmacoxib), known as a cyclooxygenase-2 inhibitor, has been synthesized using 5-aryl-4-bromo-3(2H)furanone as a key synthetic intermediate.¹⁰ However, few synthetic methods have been reported, except for the bromination of the carbon-carbon double bond in 3(2H)furanone¹⁰ or the cyclization/1,2-migration of 2-alkynyl-2silyloxycarbonyl compounds.¹¹ Therefore, the development of new approaches for the construction of 4-halo-3(2H)furanones is desired.

We previously reported a synthetic methodology for the construction of a 3(2H)-furanone ring via intramolecular cyclization of 3-alkoxycarbonyl-2-oxopropyldiphenylsulfonium tetrafluoroborate (1) (Scheme 1).¹² The reaction involves an enolate intermediate (A), generated by the treatment of the sulfonium salt (1) with a base, which is trapped by electrophiles like alkyl halides (Alkyl-X). While considering the mechanism of our reaction, we believed that the use of an electrophilic halogenating reagent instead of an alkylating reagent would produce the 4-halo-3(2H)-furanones (2). In this paper, we report an efficient synthesis of 4-halo-3(2H)-furanones via halogenative intramolecular cyclization of sulfonium salts. This procedure is simple in handling, and can be expedited using commercially available reagents to give 4-halogenated-3(2H)-furanones as synthetic intermediates under mild conditions.

Scheme 1. Intramolecular Cyclization of Sulfonium Salt 1

RESULTS AND DISCUSSION

We began the investigation of halogenative intramolecular cyclization with 3-ethoxycarbonyl-2-oxopropyldiphenylsulfonium tetrafluoroborate (1A) as the substrate, and Nbromophthalimide (NBP) as the halogenating reagent in THF. Although the reaction was carried out with 2.0 equiv of t-BuOK according to our previously reported reaction conditions,¹² the desired product, 4-bromo-5-ethoxy-3(2H)-furanone 2aA, was not obtained. Fortunately, decreasing the amount of t-BuOK to 1.0 equiv afforded 2aA in 26% yield (Table 1, entry 1). Encouraged by this result, we examined several other base reagents. The use of inorganic bases such as K₂CO₃, or the absence of a base, produced 2aA in still lower yields (entries 2 and 3). Experimental evidence indicated that the presence of an appropriately selected nucleophilic amine furthered the progress of the reaction, because the reaction gave a better yield in the presence of triethylamine (Et₃N) than a bulkier

Received: February 20, 2017 Published: May 11, 2017
 Table 1. Optimized Reaction Conditions^a

3	none	IHF	NDP	ZaA	15	
4	DIPEA	THF	NBP	2aA	47	
5	Et ₃ N	THF	NBP	2aA	63	
6	pyridine	THF	NBP	2aA	33	
7	imidazole	THF	NBP	2aA	57	
8	DMAP	THF	NBP	2aA	68	
9	DMAP	toluene	NBP	2aA	26	
10	DMAP	CH_2Cl_2	NBP	2aA	60	
11	DMAP	MeCN	NBP	2aA	62	
12	DMAP	acetone	NBP	2aA	73	
13	DMAP	DMF	NBP	2aA	76	
14	DMAP	DMF	NBSac	2aA	60	
15	DMAP	DMF	NBA	2aA	67	
16	DMAP	DMF	NBS	2aA	82	
17	DMAP	DMF	Br ₂	2aA	0	
18	DMAP	DMF	BDMS	2aA	0	
19	DMAP	DMF	NIS	2bA	83	
20	DMAP	DMF	NCS	2cA	0	

^{*a*}Reaction conditions: sulfonium salt **1A** (0.2 mmol), reagent (1.0 equiv), and base (1.0 equiv) in solvent (1.0 mL). DIPEA = N,N-diisopropylethylamine, DMAP = 4-dimethylaminopyridine, NBP = N-bromoshthalimide, NBSac = N-bromosaccharin, NBA = N-bromosaccetamide, NBS = N-bromosuccinimide, BDMS = bromodimethylsulfonium bromide, NIS = N-iodosuccinimide, NCS = N-chlorosuccinimide. ^{*b*}The product was purified by silica-gel column chromatography and the isolated yield based on **1A**.

Selectfluor

2dA

0

DMF

21

DMAP

base, *N*,*N*-diisopropylethylamine (DIPEA) (entries 4 and 5). Among the examined nucleophilic amines, 4-dimethylaminopyridine (DMAP) was the most productive, resulting in a 68% yield of **2aA** (entry 8).

Next, we investigated the solvent effect on this reaction (entries 9-13). The results revealed that polar aprotic solvents were crucial for the reaction: N,N-dimethylformamide (DMF) produced 2aA in 76% yield. These results of the solvent studies probably depended on the solubility of sulfonium salt 1A. Other brominating reagents were also examined (entries 14-18). Among the examined reagents, i.e., N-bromosaccharin (NBSac), N-bromosuccinimide (NBS), and N-bromoacetamide (NBA), NBS produced 2aA in the highest yield (entry 16), whereas bromine¹³ and bromodimethylsulfonium bromide (BDMS),¹⁴ employed in the bromination reaction of the active methylene moiety in 1,3-dicarbonyl compounds, failed to produce 2aA (entries 17 and 18). The iodination reaction by N-iodosuccinimide (NIS) as another halogen source proceeded successfully to afford 4-iodo-5-ethoxy-3(2H)-furanone 2bA in 83% yield (entry 19). However, N-chlorosuccinimide (NCS) and chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) could not be applied to the reaction (entries 20 and 21).

With optimized reaction conditions in hand, we set out to investigate the substrate scope and limitations of the halogenative intramolecular cyclization (Table 2). Initially, the

Table 2. Substrate Scope and Limitations ^a									
⊖ BF₄ Ph	Ph O O S ⊕ 1	NXS (1.0 e DMAP (1.0 OR DMF rt, 1 h	equiv) O equiv) 2a (X 2b (X	_X OR = Br) = I)					
1A : R =	Et	1D: R = Cyclohe	exyl 1G: R =	Ph					
1B : R =	<i>i</i> Pr	1E : R = Allyl	1 H : R =	Bn					
1C: R =	Cyclopentyl	1F: R = Proparg	yl 1I: R = 4	-BrC ₆ H ₄ CH ₂					
entry	1	NXS	2	yield (%) ^b					
1	1A	NBS	2aA	82					
2	1B	NBS	2aB	86					
3	1C	NBS	2aC	72					
4	1D	NBS	2aD	83					
5	1E	NBS	2aE	60					
6	1F	NBS	2aF	73					
7	1G	NBS	2aG	75					
8	1H	NBS	2aH	71					
9	1I	NBS	2aI	76					
10	1A	NIS	2bA	83					
11	1B	NIS	2bB	98					
12	1C	NIS	2bC	97					
13	1D	NIS	2bD	91					
14	1E	NIS	2bE	80					
15	1F	NIS	2bF	96					
16	1G	NIS	2bG	87					
17	1H	NIS	2bH	84					
18	1I	NIS	2bI	90					

^{*a*}Reaction conditions: sulfonium salt **1** (0.2 mmol), NXS (1.0 equiv), and DMAP (1.0 equiv) in DMF (1.0 mL). NBS = *N*-bromosuccinimide, NIS = *N*-iodosuccinimide. ^{*b*}The residue was purified by silica-gel column chromatography and the isolated yield based on **1**.

reactions of the sulfonium salts 1 were carried out with NBS and DMAP in DMF. The sufonium salts 1 bearing ethyl. isopropyl, cyclopentyl, or cyclohexyl esters underwent brominative intramolecular cyclization to give the corresponding 4-bromo-5-alkoxy-3(2H)-furanones 2aA-2aD in good to high yields (entries 1-4). Interestingly, sulfonium salts 1 bearing allyl and propargyl moieties produced 4-bromo-3(2H)furanones bearing allyloxy (2aE) and propargyloxy (2aF) groups at the 5-position in 60% and 73% yields, respectively (entries 5 and 6). Although carbon-carbon double or triple bonds are generally reactive for NBS, brominative intramolecular cyclization of 1E and 1F proceeded successfully under the reaction conditions. Moreover, the reactions using phenyl, benzyl, and 4-bromobenzyl groups also worked well (entries 7-9). We also examined the reaction using NIS; the desired 4-iodo-3(2H)-furanones were obtained in higher yields in all of the cases (entries 10-18), compared to the corresponding 4-bromo products. It is noteworthy that all the reactions were complete within 1 h at room temperature and were achieved using common and inexpensive reagents: NBS, NIS, and DMAP.

To determine the detailed reaction mechanism, a ¹H NMR study was initiated. It had been previously reported that NIS

The Journal of Organic Chemistry

formed a coordination complex with DMAP, and the resulting ¹H NMR signal at 3.04 ppm (in CDCl₃) was shifted upfield,¹ whereas NBS was reported to be inactivated by DMAP to form a coordination complex.¹⁶ However, from the results shown in Table 2, we hypothesized that NBS might also form a complex with DMAP. In CDCl₃, the chemical shift of the methylene protons of NBS was 2.97 ppm, while the signal was shifted upfield to 2.81 ppm in the equimolar mixture of NBS and DMAP after 10 min of mixing (Figure 1a,b). This upfield shift of methylene protons in NBS closely resembled that in NIS. The signal at 3.03 ppm from NIS was shifted to 2.74 ppm as the signal in the 1:1 mixture of NIS and DMAP (Figure S1), which was consistent with reported data.¹⁵ Thus, the observation of signal shift suggests that NBS is activated by DMAP as well as NIS. In contrast, NCS did not seem to form a complex with DMAP, because no change in chemical shift was observed upon mixing with DMAP (Figure 1c,d). Additionally, in the mixture of NIS or NBS with various amounts of DMAP (0.2-1.0 equiv), we observed an ambiguous broad signal, and sequential upfield shifts of signal corresponding to the amount of DMAP; however, no such observation was made in the mixture of NCS with DMAP (Figures S2-S4). These results of the ¹H NMR study agreed well with the reactivity of **1A** with N-halosuccinimide (NXS) and DMAP in CDCl₃; NBS and NIS provided the corresponding 4-halogenated products 2aA and 2bA, respectively, but NCS did not give any 4-chlorinated product 2cA under the same conditions (Scheme 2). The treatment of 1A with DMAP in the absence of NXS afforded the only not halogenated cyclization product, 5-ethoxy-3(2H)furanone.¹² All of the results mentioned above revealed that an equimolar complex of NIS or NBS with DMAP is essential for the reaction.

On the basis of all the results described above, a plausible mechanism for the halogenative intramolecular cyclization of sulfonium salt 1 is postulated in Scheme 3. Initially, NXS was activated by an equimolar amount of DMAP to form a coordination complex **B**. The deprotonation of 1 generated enolate **A** and succinimide. The nucleophilic attack of the resultant enolate **A** on the electron-deficient halogen atom generated a 3-halogenated sulfonium salt **C** and DMAP. Subsequently, enolate **D** produced by deprotonation of **C** with the regenerated DMAP underwent a cyclization to give 5-alkoxy-4-halo-3(2*H*)-furanone **2**.

We executed the scale-up of the halogenative intermolecular cyclization to demonstrate the potential benefit of this synthetic method. The reaction of the sulfonium salts **1A** and **1F** (5.0 mmol) with equimolar amounts of NXS and DMAP in DMF (10 mL) at room temperature was completed within 1 h to give the corresponding 4-halo-3(2H)-furanones **2aA**, **2aF**, **2bA**, and **2bF** with good to high yields (Scheme 4).

For further evaluation of the synthetic utility of this protocol, we undertook Pd-catalyzed coupling reactions using 4-iodo-3(2H)-furanone **2bA** as the substrate (Scheme 5). The Suzuki– Miyaura coupling reactions of **2bA** with 1.5 equiv of arylboronic acids in the presence of 5 mol % of Pd(OAc)₂ and 3.0 equiv of CsF, at 40 °C for 21 h, afforded 4-aryl-5ethoxy-3(2H)-furanones (3) in high yields (eq 1). The Sonogashira–Hagiwara coupling reactions of **2bA** with 2.0 equiv of terminal alkynes in the presence of 3 mol % of Pd(PPh₃)₂Cl₂ and 10 mol % of CuI gave 4-alkynyl-5-ethoxy-3(2H)-furanones (4) with good to high yields (eq 2). Furthermore, 5 mol % of Pd(PPh₃)₄ was used to catalyze the Migita–Kosugi–Stille coupling reaction of **2bA** with 1.0 equiv

Figure 1. ¹H NMR spectra of (a) an equimolar mixture of NBS and DMAP after 10 min of mixing, (b) NBS only, (c) an equimolar mixture of NCS and DMAP after 10 min of mixing, (d) NCS only, and (e) DMAP only.

of tri(*n*-butyl)vinyltin, which afforded 5-ethoxy-4-vinyl-3(2H)-furanone (5) in 61% yield. Thus, the transformations of **2bA** furnished 3(2H)-furanone derivatives bearing alkynyl, alkenyl, and aryl groups at the 4-position, indicating that 4-halo-3(2H)-furanones play a vital role in the reactions.

Scheme 2. Halogenative Intramolecular Cyclization of 1A with Equimolar Amounts of NXS and DMAP in CDCl₃

CONCLUSION

In summary, we have developed the synthesis of 4-bromo- or 4iodo-3(2*H*)-furanones from sulfonium salts via halogenation, followed by intramolecular cyclization under mild conditions. We clarified some substrate scopes and the functional group tolerances of the reaction. A coordination complex was prepared from an equimolar mixture of DMAP and *N*halosuccinimides when NBS or NIS was involved in this reaction. Furthermore, 4-iodo-3(2*H*)-furanones could be subjected to Pd-catalyzed coupling reactions and converted into 3(2*H*)-furanone derivatives possessing alkynyl, alkenyl, and aryl groups at the 4-position. This methodology could supply novel synthetic intermediates for the preparation of compounds with relevant molecular frameworks.

EXPERIMENTAL SECTION

All reactions were performed under an argon atmosphere. The reagents and solvents were used as received from commercial suppliers without any further purification, unless otherwise indicated. Sulfonium salt 1 was prepared according to our reported method.¹² NBS was recrystallized from hot water. Et₃N was distilled over calcium hydride. Silica gel (40–50 mesh) was used for flash column chromatography. Components separated by thin-layer chromatography (TLC) were detected under UV light at 254 nm or by staining with ethanoic *p*-anisaldehyde. IR spectra were recorded on an FT-IR spectrometer. ¹H and ¹³C NMR spectra recorded in CDCl₃ were referenced to TMS (0.00 ppm) and the solvent peak (77.0 ppm). High-resolution mass spectra (HRMS) were obtained using an electrospray ionization time-of-flight (ESI-TOF) mass spectrometer.

General Procedure for Synthesis of 5-Alkoxy-4-halo-3(2*H*)furanones (2). 4-Dimethylaminopyridine (DMAP) (24.5 mg, 0.20 mmol) and *N*-halosuccinimide (1.0 equiv) were added to a solution of sulfonium salt 1 (0.20 mmol) in dry DMF (1.0 mL) at room temperature, and the mixture was stirred for 1 h. The mixture was treated with water and extracted with EtOAc. The organic extract was washed with an aqueous solution of 0.5 M Na₂S₂O₃, water (three times), and brine. The organic extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (*n*-hexane/EtOAc = 1:1) gave the desired 5-alkoxy-4-halo-3(2*H*)-furanone **2**.

Scheme 5. Transformation of 4-Iodo-3(2H)-furanone 2bA

4-Bromo-5-ethoxy-3(2H)-furanone (2aA). 34.1 mg, 82% yield; pale yellow solid; mp 76.8–77.5 °C; $R_f = 0.38$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1700, 1599 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.74 (s, 2 H), 4.56 (q, J = 7.1 Hz, 2 H), 1.50 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.8, 179.8, 75.4, 72.2, 67.5, 14.7; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₆H₇Br⁸¹NaO₃, 230.9451; found, 230.9446; calcd for C₆H₇Br⁷⁹NaO₃, 228.9471; found, 228.9472.

4-Bromo-5-isopropyloxy-3(2H)-furanone (**2aB**). 38.2 mg, 86% yield; pale yellow solid; mp 90.4–90.5 °C; $R_f = 0.44$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1690, 1584 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.23 (sept, J = 6.2 Hz, 1 H), 4.73 (s, 2 H), 1.47 (d, J = 6.2 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.9, 179.5, 76.9, 75.2, 72.4, 22.3; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₇H₉Br⁸¹NaO₃, 244.9607; found, 244.9607; calcd for C₇H₉Br⁷⁹NaO₃, 242.9623.

DOI: 10.1021/acs.joc.7b00399 J. Org. Chem. 2017, 82, 5583-5589 4-Bromo-5-cyclopentyloxy-3(2H)-furanone (2aC). 35.6 mg, 72% yield; pale yellow solid; mp 89.9–90.3 °C; $R_f = 0.50$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2955, 1696, 1596 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.42–5.39 (m, 1 H), 4.72 (s, 2 H), 1.99–1.95 (m, 4 H), 1.90–1.82 (m, 2 H), 1.72–1.64 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.9, 179.6, 85.6, 75.3, 72.6, 33.2, 23.5; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₉H₁₁Br⁸¹NaO₃, 270.9764; found, 270.9766; calcd for C₉H₁₁Br⁷⁹NaO₃, 268.9784; found, 268.9783.

4-Bromo-5-cyclohexyloxy-3(2H)-furanone (2aD). 43.3 mg, 83% yield; pale yellow solid; mp 59.9–60.6 °C; $R_f = 0.56$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2941, 1698, 1577 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.00–4.95 (m, 1 H), 4.71 (s, 2 H), 2.01–1.97 (m, 2 H), 1.87–1.82 (m, 2 H), 1.74–1.67 (m, 2 H), 1.60–1.54 (m, 1 H), 1.45–1.32 (m, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.9, 179.5, 81.3, 75.2, 72.4, 31.8, 24.8, 23.2; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₀H₁₃Br⁸¹NaO₃, 284.9921; found, 284.9915; calcd for C₁₀H₁₃-Br⁷⁹NaO₃, 282.9940; found, 282.9945.

5-Allyloxy-4-bromo-3(2H)-furanone (2aE). Compound 2aE was sensitive to moisture and acid. The flask containing 2aE was immediately filled with an argon and stored at -20 °C. 26.3 mg, 60% yield; yellow oil; $R_f = 0.52$ (*n*-hexane/EtOAc = 1:2); IR (neat): 1704, 1586 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.02 (ddq, *J* = 17.1, 10.5, 5.9 Hz, 1 H), 5.49 (dq, *J* = 17.1, 1.3 Hz, 1 H), 5.43 (dq, *J* = 10.5, 1.3 Hz, 1 H), 4.96 (dt, *J* = 5.9, 1.3 Hz, 2 H), 4.75 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.9, 179.6, 129.9, 121.1, 75.5, 72.5, 71.3; HRMS (ESI-TOF): m/z [M – CH₂CH=CH₂]⁻ calcd for C₄H₂-Br⁸¹O₃, 178.9173; found, 178.9179; calcd for C₄H₂Br⁷⁹O₃, 176.9193; found, 176.9199.

4-Bromo-5-propargyloxy-3(2H)-furanone (2aF). 31.6 mg, 73% yield; pale yellow solid; mp 105.0–105.4 °C; $R_f = 0.48$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2122, 1693, 1587 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.06 (d, J = 2.4 Hz, 2 H), 4.79 (s, 2 H), 2.71 (t, J = 2.4 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃): δ 190.0, 179.1, 78.1, 75.8, 75.2, 73.3, 57.9; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₇H₅Br⁸¹NaO₃, 240.9294; found, 240.9290; calcd for C₇H₅Br⁷⁹NaO₃, 238.9314; found, 238.9309.

4-Bromo-5-phenyloxy-3(2H)-furanone (**2aG**). 38.3 mg, 75% yield; pale yellow solid; mp 173.8–174.3 °C; $R_f = 0.58$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1698, 1572 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.47–7.44 (m, 2 H), 7.37–7.34 (m, 1 H), 7.24–7.22 (m, 2 H), 4.75 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 190.4, 178.7, 150.8, 129.9, 127.2, 120.5, 75.6, 74.2; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₀H₇Br⁸¹NaO₃, 278.9451; found, 278.9449; calcd for C₁₀H₇Br⁷⁹Na-O₃, 276.9471; found, 276.9467.

5-Benzyloxy-4-bromo-3(2H)-furanone (2aH). 38.2 mg, 71% yield; pale yellow solid; mp 65.6–66.5 °C; $R_f = 0.40$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1699, 1594 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.41 (m, 5 H), 5.48 (s, 2 H), 4.75 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.9, 179.7, 133.3, 129.4, 129.0, 128.4, 75.6, 72.7, 72.4; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₁H₉Br⁸¹NaO₃, 292.9608; found, 292.9616; calcd for C₁₀H₇Br⁷⁹NaO₃, 290.9627; found, 290.9621.

4-Bromo-5-(4-bromobenzyl)oxy-3(2H)-furanone (**2a**l). 52.9 mg, 76% yield; pale yellow solid; mp 110.0–110.7 °C; $R_f = 0.48$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1701, 1590 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, J = 8.3 Hz, 2 H), 7.30 (d, J = 8.3 Hz, 2 H), 5.43 (s, 2 H), 4.75 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 189.8, 179.5, 132.3, 132.2, 130.0, 123.7, 75.6, 72.9, 71.5; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₁H₈Br⁸¹Br⁷⁹NaO₃, 370.8712; found, 370.8707; calcd for C₁₀H₇Br⁷⁹₂NaO₃, 368.8732; found, 368.8739.

5-Ethoxy-4-iodo-3(2H)-furanone (2bA). 42.2 mg, 83% yield; pale yellow solid; mp 91.2–91.5 °C (dec.); $R_f = 0.48$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1698, 1571 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.78 (s, 2 H), 4.55 (q, J = 7.1 Hz, 2 H), 1.49 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.6, 181.8, 75.6, 67.5, 40.0, 14.7; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₆H₇INaO₃, 276.9332; found, 276.9336.

5-Isopropyloxy-4-iodo-3(2H)-furanone (2bB). 52.6 mg, 98% yield; pale yellow solid; mp 84.5–84.9 °C; $R_f = 0.54$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1680, 1570 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ

5.22 (sept, J = 6.2 Hz, 1 H), 4.77 (s, 2 H), 1.47 (d, J = 6.2 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.6, 181.5, 76.8, 75.4, 40.4, 22.3; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₇H₉INaO₃, 290.9489; found, 290.9490.

5-Cyclopentyloxy-4-iodo-3(2H)-furanone (2bC). 57.2 mg, 97% yield; pale yellow solid; mp 78.2–79.0 °C; $R_f = 0.60$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2951, 1685, 1577 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.41–5.38 (m, 1 H), 4.77 (s, 2 H), 1.98–1.94 (m, 4 H), 1.90–1.82 (m, 2 H), 1.72–1.64 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.6, 181.6, 85.5, 75.5, 40.5, 33.2, 23.5; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₉H₁₁INaO₃, 316.9645; found, 316.9644.

5-Cyclohexyloxy-4-iodo-3(2H)-furanone (2bD). 56.3 mg, 91% yield; pale yellow solid; mp 77.5–78.3 °C; $R_f = 0.64$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2945, 1686, 1577 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.00–4.95 (m, 1 H), 4.76 (s, 2 H), 2.00–1.95 (m, 2 H), 1.86–1.81 (m, 2 H), 1.74–1.67 (m, 2 H), 1.57–1.54 (m, 1 H), 1.46–1.36 (m, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.6, 181.5, 81.2, 75.4, 40.4, 31.8, 24.9, 23.2; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₀H₁₃INaO₃, 330.9802; found, 330.9802.

5-Allyloxy-4-iodo-3(2H)-furanone (**2bE**). Compound **2bE** was sensitive to moisture and acid. The flask containing **2aE** was immediately filled with argon and stored at -20 °C. 42.4 mg, 80% yield; yellow oil; $R_f = 0.60$ (*n*-hexane/EtOAc = 1:2); IR (neat): 1697, 1574 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.05–5.97 (m, 1 H), 5.50–5.47 (m, 1 H), 5.43–5.41 (m, 1 H), 4.95 (dt, J = 5.8, 1.3 Hz, 2 H), 4.79 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.6, 181.6, 130.0, 120.9, 75.7, 71.2, 40.3; HRMS (ESI-TOF): m/z [M – CH₂CH=CH₂]⁻ calcd for C₄H₂IO₃, 224.9054; found, 224.9053.

4-lodo-5-propargyloxy-3(2H)-furanone (**2bF**). 50.7 mg, 96% yield; pale yellow solid; mp 96.2–96.8 °C; $R_f = 0.58$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2136, 1686, 1571 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.05 (d, J = 2.4 Hz, 2 H), 4.83 (s, 2 H), 2.70 (t, J = 2.4 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.7, 181.3, 78.0, 76.0, 75.3, 57.9, 41.0; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₇H₅INaO₃, 286.9176; found, 286.9173.

4-lodo-5-phenyloxy-3(2H)-furanone (**2bG**). 52.3 mg, 87% yield; pale yellow solid; mp 152.5–154.0 °C (dec.); $R_f = 0.74$ (*n*-hexane/ EtOAc = 1:2); IR (KBr): 1687, 1569 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.47–7.43 (m, 2 H), 7.36–7.33 (m, 1 H), 7.23–7.21 (m, 2 H), 4.79 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 193.1, 180.8, 150.9, 129.9, 127.2, 120.6, 75.8, 42.1; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₀H₇INaO₃, 324.9332; found, 324.9331.

5-Benzyloxy-4-iodo-3(2H)-furanone (**2bH**). 53.0 mg, 84% yield; pale yellow solid; mp 73.5–74.2 °C; $R_f = 0.60$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1685, 1562 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.47–7.40 (m, 5 H), 5.48 (s, 2 H), 4.79 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.6, 181.7, 133.4, 129.3, 128.9, 128.2, 75.7, 72.3, 40.5; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₁H₉INaO₃, 338.9513; found, 338.9501.

5-(4-Bromobenzyl)oxy-4-iodo-3(2H)-furanone (**2b**I). 71.2 mg, 90% yield; pale yellow solid; mp 143.3–143.9 °C; $R_f = 0.58$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1687, 1568 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 8.4 Hz, 2 H), 5.42 (s, 2 H), 4.79 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃): δ 192.5, 181.5, 132.4, 132.2, 129.8, 123.6, 75.8, 71.4, 40.7; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₁H₈Br⁸¹INaO₃, 418.8574; found, 418.8575; calcd for C₁₁H₈Br⁷⁹INaO₃, 416.8594; found 416.8590.

Large-Scale Procedure for the Synthesis of 5-Alkoxy-4-halo-3(2H)-furanones (2). Equivalent amounts of DMAP and Nhalosuccinimide were added to a solution of sulfonium salt 1 (5.0 mmol) in dry DMF (10 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and then stirred for 1 h. The mixture was treated with water and extracted with EtOAc. The organic extract was washed with an aqueous of 0.5 M Na₂S₂O₃, water (three times), and brine. The organic extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (n-hexane/EtOAc = 1:1) gave the desired 5-alkoxy-4-halo-3(2H)-furanone 2, as depicted in Scheme 4. General Procedure for the Synthesis of 4-Aryl-5-ethoxy-3(2*H*)-furanones 3. A Schlenk flask was charged with 5-ethoxy-4iodo-3(2*H*)-furanone 2bA (50.8 mg, 0.20 mmol), $Pd(OAc)_2$ (2.2 mg, 5 mol %), arylboronic acid (1.5 equiv), and CsF (91.2 mg, 3.0 equiv). To the Schlenk flask, degassed and dry THF (1.0 mL) was added via cannula, and the mixture was stirred at 40 °C for 21 h. The reaction mixture was treated with brine and extracted with EtOAc. The extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (*n*hexane/EtOAc = 1:1) gave the 4-aryl-5-ethoxy-3(2*H*)-furanone 3.

5-Ethoxy-4-phenyl-3(2H)-furanone (**3a**). 33.2 mg, 81% yield; white solid; mp 118.5–119.3 °C; $R_f = 0.44$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1667, 1588 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.87–7.85 (m, 2 H), 7.37–7.34 (m, 2 H), 7.21–7.18 (m, 1 H), 4.68 (s, 2 H), 4.59 (q, *J* = 7.1 Hz, 2 H), 1.52 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 194.1, 180.6, 129.4, 128.2, 125.9 (2C), 93.9, 74.6, 66.6, 14.8; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₂H₁₂NaO₃, 227.0679; found, 227.0676.

5-*Ethoxy*-4-(4-*methylphenyl*)-3(2*H*)-furanone (**3b**). 38.1 mg, 87% yield; white solid; mp 127.5–127.7 °C; $R_f = 0.48$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1681, 1588 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, J = 8.1 Hz, 2 H), 7.17 (d, J = 8.1 Hz, 2 H), 4.67 (s, 2 H), 4.58 (q, J = 7.1 Hz, 2 H), 2.33 (s, 3 H), 1.51 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 194.2, 180.5, 135.6, 128.9, 126.4, 125.9, 93.9, 74.5, 66.5, 21.2, 14.9; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₃H₁₄NaO₃, 241.0835; found, 241.0839.

4-(4-Chlorophenyl)-5-ethoxy-3-(2H)-furanone (**3c**). 38.9 mg, 81% yield; white solid; mp 109.0–109.3 °C; $R_f = 0.44$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1675, 1579 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 8.7 Hz, 2 H), 7.31 (d, J = 8.7 Hz, 2 H), 4.68 (s, 2 H), 4.61 (q, J = 7.1 Hz, 2 H), 1.33 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 193.9, 180.5, 131.2, 128.3, 128.0, 127.0, 93.0, 74.7, 66.9, 14.8; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₂H₁₁ClNaO₃, 261.0289; found, 261.0286.

General Procedure for the Synthesis of 4-Alkynyl-5-ethoxy-3(2H)-furanones 4. A Schlenk flask was charged with S-ethoxy-4iodo-3(2H)-furanone 2bA (25.4 mg, 0.10 mmol), Pd(PPh₃)₂Cl₂ (2.1 mg, 3 mol %), and copper(I) iodide (2.0 mg, 10 mol %). The mixture of dry THF (0.5 mL), dry Et₃N (0.5 mL), and the alkyne (2.0 equiv) was degassed using the freeze-pump-thaw technique (4 cycles) and added to the Schlenk flask via cannula. The mixture was stirred under reaction conditions depicted in Scheme 3, eq 2. The reaction mixture was treated with brine and extracted with EtOAc. The extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (*n*hexane/EtOAc = 1:1) gave the 4-alkynyl-5-ethoxy-3(2H)-furanone 4.

5-Ethoxy-4-trimethylsilylethynyl-3(2H)-furanone (4a). 21.3 mg, 95% yield; white solid; mp 106.1–106.6 °C; $R_f = 0.48$ (*n*-hexane/ EtOAc = 1:2); IR (KBr): 2158, 1699, 1597 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.65 (q, J = 7.1 Hz, 2 H), 4.63 (s, 2 H), 1.50 (t, J =7.1 Hz, 3 H), 0.21 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃): δ 193.8, 183.6, 100.6, 91.0, 81.4, 75.2, 67.9, 14.8, 0.0; HRMS (ESI-TOF): m/z[M + Na]⁺ calcd for C₁₁H₁₆NaO₃Si, 247.0761; found, 247.0759.

5-Ethoxy-4-hex-1-ynyl-3(2H)-furanone (**4b**). 17.3 mg, 83% yield; pale yellow solid; mp 39.1–39.4 °C; $R_f = 0.46$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2363, 1686, 1578 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.62 (s, 2 H), 4.62 (q, J = 7.1 Hz, 2 H), 2.40 (t, J = 7.2 Hz, 2 H), 1.58–1.52 (m, 2 H), 1.48 (t, J = 7.1 Hz, 3 H), 1.46–1.39 (m, 2 H), 0.91 (t, J = 7.3 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 194.5, 183.1, 96.2, 81.5, 75.0, 67.5, 66.1, 30.8, 22.0, 19.4, 14.8, 13.6; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₂H₁₆NaO₃, 231.0992; found, 231.0988.

5-Ethoxy-4-phenylethynyl-3(2H)-furanone (4c). 16.2 mg, 71% yield; pale yellow solid; mp 89.8–90.6 °C; $R_f = 0.40$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 2221, 1688, 1584 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.49–7.47 (m, 2 H), 7.31–7.28 (m, 3 H), 4.70 (s, 2 H), 4.66 (q, *J* = 7.1 Hz, 2 H), 1.52 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 193.6, 183.0, 131.4, 128.1, 128.0, 123.3, 94.9, 81.2, 75.7, 75.4, 67.9, 14.8; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₄H₁₂NaO₃, 251.0679; found, 251.0672.

Synthesis of 5-Ethoxy-4-vinyl-3(2H)-furanone 5. A Schlenk flask was charged with 5-ethoxy-4-iodo-3(2H)-furanone 2bA (25.4 mg, 0.10 mmol) and $Pd(PPh_3)_4$ (5.8 mg, 5 mol %). To the Schlenk flask was added degassed and dry toluene (1.0 mL), followed by tri(nbutyl)vinyltin (30 μ L, 1.0 equiv), and the mixture was stirred at 80 °C for 6 h. The reaction mixture was treated with brine and extracted with EtOAc. The extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (n-hexane/EtOAc = 1:1) gave the 5ethoxy-4-vinyl-3(2H)-furanone 5 as a pale yellow solid (9.4 mg, 61% yield); mp 48.1–48.7 °C; $R_f = 0.48$ (*n*-hexane/EtOAc = 1:2); IR (KBr): 1671, 1640, 1580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 6.22 (dd, J = 17.8, 11.6 Hz, 1 H), 5.84 (dd, J = 17.8, 2.1 Hz, 1 H), 5.11 (dd, J = 11.6, 2.1 Hz, 1 H), 4.57 (s, 2 H), 4.51 (q, J = 7.1 Hz, 2 H), 1.47 (t, I = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃): δ 193.9, 180.6, 121.9, 112.6, 93.6, 74.8, 66.4, 14.8; HRMS (ESI-TOF): *m*/*z* [M + Na]⁺ calcd for C₈H₁₀NaO₃, 177.0522; found, 177.0518.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b00399.

¹H NMR spectral data for an equimolar mixture of NIS and DMAP, the mixture of NXS with varying amounts of DMAP (0.2–1.0 equiv), and ¹H and ¹³C NMR spectral data for **2**, **3**, **4**, and **5** (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: tkawano@iwate-med.ac.jp.

ORCID 🔍

Sho Inagaki: 0000-0002-7183-7030

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Recent examples; see: (a) Li, Y.; Hale, K. J. Org. Lett. 2007, 9, 1267–1270. (b) Mitchell, J. M.; Finney, N. S. Org. Biomol. Chem. 2005, 3, 4274–4281. (c) Hayashi, Y.; Shoji, M.; Yamaguchi, S.; Mukaiyama, T.; Yamaguchi, J.; Kakeya, H.; Osada, H. Org. Lett. 2003, 5, 2287–2290.

(2) Jerris, P. J.; Smith, A. B., III J. Org. Chem. 1981, 46, 577-585.

(3) Mack, R. A.; Zazulak, W. I.; Radov, L. A.; Baer, J. E.; Stewart, J. D.; Elzer, P. H.; Kinsolving, C. R.; Georgiev, V. S. *J. Med. Chem.* **1988**, *31*, 1910–1918.

(4) Felman, S. W.; Jirkovsky, I.; Memoli, K. A.; Borella, L.; Wells, C.; Russell, J.; Ward, J. *J. Med. Chem.* **1992**, *35*, 1183–1190.

(5) Chimichi, S.; Boccalini, M.; Cosimelli, B.; Dall'Acqua, F.; Viola, G. *Tetrahedron* **2003**, *59*, 5215–5223.

(6) Shamshina, J. L.; Snowden, T. S. Tetrahedron Lett. 2007, 48, 3767–3769.

(7) Carotti, A.; Carrieri, A.; Chimichi, S.; Boccalini, M.; Cosimelli, B.; Gnerre, C.; Carotti, A.; Carrupt, P.-A.; Testa, B. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3551–3555.

(8) Some recent papers on the synthesis of 3(2H)-furanone using metal. For Ag, see: (a) Wang, F.; Lu, S.; Chen, B.; Zhou, Y.; Yang, Y.; Deng, G. Org. Lett. **2016**, 18, 6248–6251. (b) Zhang, Z.; Dai, Z.; Jiang, X. Asian J. Org. Chem. **2016**, 5, 52–56. For Cu, see: (c) Liang, H.; Liu, H.; Jiang, X. Synlett **2016**, 27, 2774–2782. (d) He, H.; Qi, C.; Hu, X.; Ouyang, L.; Xiong, W.; Jiang, H. J. Org. Chem. **2015**, 80, 4957–4965. For Pd, see: (e) John, J.; Târcoveanu, E.; Jones, P. G.; Hopf, H. Beilstein J. Org. Chem. **2014**, 10, 1462–1470. (f) Kusakabe, T.; Takahashi, T.; Shen, R.; Ikeda, A.; Dhage, Y. D.; Kanno, Y.; Inouye, Y.; Sasai, H.; Mochida, T.; Kato, K. Angew. Chem., Int. Ed. **2013**, 52, 7845–7849. For Au, see: (g) Mal, K.; Sharma, A.; Maulik, P. R.; Das,

The Journal of Organic Chemistry

I. Chem. - Eur. J. 2014, 20, 662–667. (h) Hu, F.; Yan, J.; Cheng, M.; Hu, Y. Chem. - Asian J. 2013, 8, 482–487.

(9) Some recent papers on the synthesis of 3(2H)-furanone not using metal; see: (a) Chen, K.; Shi, G.; Zhang, W.; Li, H.; Wang, C. J. Am. Chem. Soc. 2016, 138, 14198–14201. (b) Medvedev, J. J.; Semenok, D. V.; Azarova, X. V.; Rodina, L. L.; Nikolaev, V. A. Synthesis 2016, 48, 4525–4532. (c) Malkina, A. G.; Stepanov, A. V.; Sobenina, L. N.; Shemyakina, O. A.; Ushakov, I. A.; Smirnov, V. I.; Trofimov, B. A. Synthesis 2016, 48, 1880–1891. (d) Picado, A.; Li, S.; Dieter, R. K. J. Org. Chem. 2016, 81, 1391–1400. (e) Mal'kina, A. G.; Shemyakina, O. A.; Stepanov, A. V.; Volostnykh, O. G.; Ushakov, I. A.; Sobenina, L. N.; Borodina, T. N.; Smirnov, V. I.; Trofimov, B. A. Synthesis 2016, 47, 271–280. (f) Trofimov, B. A.; Stepanov, A. V.; Mal'kina, A. G.; Volostnykh, O. G.; Shemyakina, O. A.; Ushakov, I. A. Synth. Commun. 2015, 45, 2718–2729. (g) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. Chem. - Eur. J. 2014, 20, 662–667.

(10) (a) Amslinger, S.; Lindner, S. K. Synthesis 2011, 2011, 2671–2683. (b) Shin, S. S.; Byun, Y.; Lim, K. M.; Choi, J. K.; Lee, K.-W.; Moh, J. H.; Kim, J. K.; Jeong, Y. S.; Kim, J. Y.; Choi, Y. H.; Koh, H.-J.; Park, Y.-H.; Oh, Y. I.; Noh, M.-S.; Chung, S. J. Med. Chem. 2004, 47, 792–804.

(11) Crone, B.; Kirsch, S. F. J. Org. Chem. 2007, 72, 5435-5438.

(12) Inagaki, S.; Ukaku, M.; Chiba, A.; Takahashi, F.; Yoshimi, Y.; Morita, T.; Kawano, T. J. Org. Chem. **2016**, *81*, 8363–8369.

(13) (a) de los Santos, J. M.; Ignacio, R.; Es Sbai, Z.; Aparicio, D.;
Palacios, F. J. Org. Chem. 2014, 79, 7607–7615. (b) Okonya, J. F.;
Hoffman, R. V.; Johnson, M. C. J. Org. Chem. 2002, 67, 1102–1108.
(14) Khan, A. T.; Ali, M. A.; Goswami, P.; Choudhury, L. H. J. Org.

Chem. 2006, 71, 8961–8963. (15) Meng, C.; Liu, A.; Liu, Y.; Wang, Q. Org. Biomol. Chem. 2015,

(15) Meng, C.; Liu, A.; Liu, Y.; Wang, Q. Org. Biomol. Chem. 2015, 13, 6766–6772.

(16) Cheng, Y. A.; Chen, T.; Tan, C. K.; Heng, J. J.; Yeung, Y.-Y. J. Am. Chem. Soc. **2012**, 134, 16492–16495.